Iterative learning from positive data and negative counterexamples

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative Learning from Positive Data and Negative Counterexamples

A model for learning in the limit is defined where a (so-called iterative) learner gets all positive examples from the target language, tests every new conjecture with a teacher (oracle) if it is a subset of the target language (and if it is not, then it receives a negative counterexample), and uses only limited long-term memory (incorporated in conjectures). Three variants of this model are co...

متن کامل

Automatic Learning from Positive Data and Negative Counterexamples

We introduce and study a model for learning in the limit by finite automata from positive data and negative counterexamples. The focus is on learning classes of languages with a membership problem computable by finite automata (so-called automatic classes). We show that, within the framework of our model, finite automata (automatic learners) can learn all automatic classes when memory of a lear...

متن کامل

Learning Languages from Positive Data and Negative Counterexamples

In this paper we introduce a paradigm for learning in the limit of potentially infinite languages from all positive data and negative counterexamples provided in response to the conjectures made by the learner. Several variants of this paradigm are considered that reflect different conditions/constraints on the type and size of negative counterexamples and on the time for obtaining them. In par...

متن کامل

Theoretical Comparisons of Learning from Positive-Negative, Positive-Unlabeled, and Negative-Unlabeled Data

In PU learning, a binary classifier is trained from positive (P) and unlabeled (U) data without negative (N) data. Although N data is missing, it sometimes outperforms PN learning (i.e., ordinary supervised learning). Hitherto, neither theoretical nor experimental analysis has been given to explain this phenomenon. In this paper, we theoretically compare PU (and NU) learning against PN learning...

متن کامل

Learning languages from positive data and a limited number of short counterexamples

We consider two variants of a model for learning languages in the limit from positive data and a limited number of short negative counterexamples (counterexamples are considered to be short if they are smaller than the largest element of input seen so far). Negative counterexamples to a conjecture are examples which belong to the conjectured language but do not belong to the input language. Wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information and Computation

سال: 2007

ISSN: 0890-5401

DOI: 10.1016/j.ic.2007.09.001